GeoGebra Tools with Proof Capabilities

Zoltán Kovács and Csilla Sólyom-Gecse

STEM Education Centre
Johannes Kepler University of Linz, Austria
Sixth Central and Eastern European Conference on Computer Algebra and Dynamic Geometry Systems in Mathematics Education

Târgu Mureș, Romania, 7 September 2016

Abstract

We report about significant enhancements of the complex algebraic geometry theorem proving subsystem in GeoGebra for automated proofs in Euclidean geometry, concerning the extension of numerous GeoGebra tools with proof capabilities. As a result, a number of elementary theorems can be proven by using GeoGebra's intuitive user interface on various computer architectures including native Java and web based systems with JavaScript. We also provide a test suite for benchmarking our results with more than 200 test cases.

Outline

(1) Introduction
(2) The ProveDetails algorithm
(3) Examples

- The altitudes of a triangle are concurrent
- Inversions map lines to circles

4. Evaluation

- Implemented tools
- A benchmark
- Application in schools?

Introduction

- What is GeoGebra?
- Automated theorem proving (ATP) and computer algebra systems (CAS).
- Using Gröbner bases.

The ProveDetails algorithm (Recio-Vélez, 1996, extended)

(1) Turn the input question $\mathscr{Q}=\left(H_{1}, \ldots ; T\right)$ to an eq. sys. S with vars v_{1}, \ldots by using reductio ad absurdum, Rabinowitsch's trick and the fixed point $A(0,0)$.
(2) Send S with some order of the indep. vars as input to the CAS (Giac/Singular) for computing an equivalent equation system by eliminating the dep. vars.
(3) Get an equivalent equation system S^{\prime} back as set of equations with polynomial factors on the LHS and 0 on the RHS. ("Flatten" factors with higher exponents.)
(4) If $S^{\prime}=\{1=0\}$, then output: "always true".
(5) If $S^{\prime}=\{0=0\}$, then output: "false".
(6) Otherwise, for each polynomial p of the LHS of eq. $p=0$ in S^{\prime},
(1) let score $s_{p}:=0$ initially,
(2) for each factor f in p,

- if f has a usable geometrical meaning, then add the educational usability score u_{f} to s_{p}, else remove $p=0$ from S^{\prime}.
(7) If $S^{\prime}=\left\{x_{P}-x_{Q}=0, y_{P}-y_{Q}=0\right\}$ for the variables of the free points P and Q, then output: "true if $P \neq Q$ ".
(8) Choose the best polynomial p in S^{\prime} with the lowest score $s_{p}<\infty$, output: the geometrical meanings of its factors in denied form as conjectures.
(9) Otherwise output: "true under certain conditions".

Setting up the free variables

Setting up polynomial equations for the hypotheses

Introduction

The altitudes of a triangle are concurrent Inversions map lines to circles

Setting up polynomial equations for the hypotheses

Introduction

The altitudes of a triangle are concurrent Inversions map lines to circles

Setting up the conjecture (thesis) in denied form

Eliminating the non-free variables from the eq. system

Welcome to giac readline interface
(c) 2001,2015 B. Parisse \& others

Homepage http://www-fourier.ujf-grenoble.fr/~parisse/giac.html
Released under the GPL license 3.0 or above
See http://www.gnu.org for license details
May contain BSD licensed software parts (lapack, atlas, tinymt)

Press CTRL and D simultaneously to finish session
Type ?commandname for help
0>> _

Eliminating the non-free variables from the eq. system

```
0>> factor(eliminate(subst([-v12+v6+v3-v1,-v11+v5-v4+v2,
-v10-v5+v4+v1,-v9+v6+v3-v2, -v8+v5-v3+v2,-v7-v6+v4+v1,
v15*v10-v16*v9-v15*v4+v9*v4+v16*v3-v10*v3,
v15*v12-v16*v11-v15*v6+v11*v6+v16*v5-v12*v5,
v13*v8-v14*v7-v13*v2+v7*v2+v14*v1-v8*v1,
v13*v10-v14*v9-v13*v4+v9*v4+v14*v3-v10*v3,
((v13-v15)*v17-1)*((v14-v16)*v17-1)],[v1=0,v2=0]),
[v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17]))
[v5*v4-v3*v6,
v6*(v5*v3-v3^2+v6*v4-v4~2),
-v3*(v4*v6+v3*v5-v5^2-v6^2),
v6*(v4-v6)*(v3^2+v4~2)]
// Time 0.03
```


Translating the non-degeneracy conditions back to geometry

From the "Gröbner basis" black box:
(1) $v_{5} v_{4}-v_{3} v_{6}=0$,
(2) $v_{6} \cdot\left(v_{5} v_{3}-v_{3}^{2}+v_{6} v_{4}-v_{4}^{2}\right)=0$,
(3) $-v_{3} \cdot\left(v_{4} v_{6}+v_{3} v_{5}-v_{5}^{2}-v_{6}^{2}\right)=0$,
(4) $v_{6} \cdot\left(v_{4}-v_{6}\right) \cdot\left(v_{3}^{2}+v_{4}^{2}\right)=0$.

Geometric translations:
(1) Let $A B C$ be a non-degenerate triangle. Then the intersection points of the altitudes are identical.
(2) Let $A B C$ be a triangle with $A B \not \perp A C$ such that the y-coordinates of A and C differ. Then the intersection points of the altitudes are identical.
(3) Let $A B C$ be a triangle with $A C \not \perp B C$ such that the x-coordinates of A and B differ. Then...
(4) Let $A B C$ be a triangle such that the y-coordinates of A and C, and B and C, differ, and also $A \neq B$. Then...

Relation Tool demo

Introduction

Evaluation

Implemented tools

- ${ }^{\text {A }}$	06	0	6	\bullet°
x_{0}^{0}	cm^{2}	0	0	\sim_{0}
9	0	Ro	\mathcal{H}	
$<_{0}^{0}$	0	\bullet	\bullet	$\stackrel{\circ}{(1)}$
0	\bullet		$\stackrel{\bullet}{\bullet}$	0°

ProveDetails algorithm: a comparison (2015)

Test name | GB (Singular)|GB (Giac)| Wu (OpenGeoProver) | Auto

Simson2	$\begin{array}{ll} A=B & \\ A=C & 1275 \\ B=C & \\ \hline \end{array}$	5921	$b=h_{1} \quad 232$	$b=h_{1} \quad 6122$	
square1	45	256	83	255	
square2	48	268	\ldots	257	
square3	46	270	104	256	
symmedians	19	230	75	295	
Thales1	$A=C \quad 52$	$A=C \quad 280$	$f_{1}=g \quad 193$	$A=C \quad 265$	
Thales2	$A=B \quad 55$	$A=B \quad 295$	113	$A=B \quad 311$	
Thales3	$A=C \quad 53$	$A=C \quad 291$	$B=C \quad 120$	$A=C \quad 287$	
triangle-areas	52	290	63	390	
triangle-m. . .ns	42	271	$\begin{aligned} & a=f_{1} \\ & d \\| e \end{aligned}$	255	
triangle-m. . .t1	38	244	77	248	
triangle-m. . .t2	38	260	76	244	
triangle-m...t3	41	246	86	256	
triangle-m...t4	30	267	78	269	
triangle-m. . .t5	37	243	83	249	
true	2	1	2	1	
Varignon	40	248	85	266	
Total (of 60)	47	45	48	49	

Current status: http://tinyurl.com/provertest (246 test cases as of 2016 August)

Use in education?

...increased availability in school mathematics instruction of ... dynamic geometry systems. . . raised the concern that such programmes would make the boundaries between conjecturing and proving even less clear for students... [They] allow students to check easily and quickly a very large number of cases, thus helping students "see" mathematical properties more easily and potentially "killing" any need for students to engage in actual proving. (Lin, Yang, Lee, Tabach and
G. Stylianides, "Principles of Task Design for Conjecturing and Proving", Springer, 2012, 305-326.)

References

- G. Ancsin, M. Hohenwarter \& Z. Kovács (2013). GeoGebra goes web. The Electronic Journal of Mathematics and Technology, 7(6):412-418.
- M. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier, A. Delobelle, C. Denizet, J. Éliás, Á. Fekete, L. Gál, Z. Konečný, Z. Kovács, S. Lizelfelner, B. Parisse \& G. Sturr (2014). GeoGebra 5.
- Z. Kovács \& B. Parisse (2015). Giac and GeoGebra - improved Gröbner basis computations. In J. Gutierrez, J. Schicho \& M. Weimann (eds.), Computer Algebra and Polynomials, Lecture Notes in Computer Science, p. 126-138. Springer.
- F. Botana, M. Hohenwarter, P. Janičić, Z. Kovács, I. Petrović, T. Recio \& S. Weitzhofer (2015). Automated theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55(1):39-59.
- Z. Kovács (2015). The Relation Tool in GeoGebra 5. In Post-conference Proceedings of the 10th International Workshop on Automated Deduction in Geometry (ADG 2014), 9-11 July 2014, Lecture Notes in Computer Science. Springer.
- Z. Kovács \& C. Sólyom-Gecse (2016): GeoGebra Tools with Proof Capabilities. arXiv:1603.01228v1 [cs.AI]

